|
|
|
|
|
|
|
|
страницы:
1
2
3
4
5
Текущая страница: 1
|
|
Содержание
Введение......................................................................................................... Основные уравнения..................................................................................... Фурье-компоненты рассеянной волны...................................................... Уравнения Виннера-Хопфа.......................................................................... Приближенные решения.............................................................................. Примеры расчетов и примеры экспериментов......................................... Заключение....................................................................................................
МОДЕЛЬ РАССЕЯНИЯ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ПАРАЛЛЕЛЕПИПЕДОМ ИЗ ДИЭЛЕКТИКА С ПОТЕРЯМИ.
ВВЕДЕНИЕ. В настоящей статье изучается задача рассеяния плоской волны параллелепипедом из диэлектрика с потерями, причем считается, что размеры параллелепипеда сравнительно больше по отношению к длине волны. При исследовании используется метод Виннера-Хопфа. А именно, посредством обобщения решения задачи для полубесконечного тела, полученного в работе Джоунса, попытаемся распространить результаты для полубесконечных пластин из диэлектрика с большим потерями так же, как было получено решение для параллелепипеда из проводника. Само собой разумеется, что полученные результаты совпадают с решением для случая идеального проводника, если считать удельную электрическую проводимость бесконечно большой. В качестве характерной особенности предлагаемого метода, по-видимому, можно указать на то, что этот метод, так же как и метод в случае параллелепипеда из проводника, оказывается чрезвычайно эффективным в применении к телам с поперечным сечением в виде продолговатого прямоугольника, большая сторона которого сравнительно велика по отношению к длине волны. Конечно, в случае больших размеров тел приближение геометрической оптики и приближение физической оптики могут практически применяться в качестве наиболее простых методов, однако, для того, чтобы знать в каком диапазоне размеров эти приближения являются верными, необходимо выполнить точные расчеты и провести эксперименты. В данной работе приводятся также и результаты модельных экспериментов, в которых использовались микроволны; проведено сравнительное изучение с результатами расчетов. Что касается среды с большими потерями, то в параллелепипеде закреплялся бетон, а в качестве проводника использовалась алюминиевая пластина, изготовленная в виде параллелепипеда. На рис.1 представлено схематическое изображение параллелепипеда и геометрические данные рассматриваемой задачи. В данном случае исследуется задача рассеяния (двухмерная) плоской волны (Е-волны), падающей на параллелепипед из диэлектрика с большими потерями под углом ( к оси х. Ширина параллелепипеда равна 2а, толщина - 2b. Считаем, что изменение во времени описывается фактором .
Рис.1. Схематическое изображение данных задаче
ОСНОВНЫЕ УРАВНЕНИЯ.
Полное электромагнитное поле (t), рассеянная волна (S) и падающая волна (i) связаны следующим соотношением: ( 1 ) Считаем, что падающая плоская волна в рассматриваемой задаче может быть задана в следующем виде: ( 2 ) Здесь: , - диэлектрическая проницаемость и магнитная проницаемость в вакууме. В силу строения рассеивающего тела (двухмерности задачи) плоскость поляризации неизменна, уравнения Максвелла можно записать в следующем виде: (3) Здесь индекс j=0 относится к волновому уравнению в вакууме, а j=1 - к волновому уравнению в среде с потерями. Кроме того, величины (, ( представляют собой диэлектрическую проницаемость и удельную электрическую проводимость среды с потерями, обозначает комплексную относительную диэлектрическую проницаемость. Решение уравнений (3) в данной задаче можно отыскивать так, чтобы удовлетворялись следующие граничные условия: (В1) условия излучения вовне при r ( ( ; (В2) непрерывность при | y |=b ; (В3) непрерывность при | x |=a, | y |=b ; (В4) непрерывность при | y |=b ; (В5) условия концевой точки при | x |=a , | y |=b . При решении задачи используется преобразование Фурье и обратное преобразование Фурье, которые определяются ниже следующим образом: (4) Здесь контур интегрирования С в обратном преобразовании представляет собой контур интегрирования в интеграле с бесконечными пределами, находящийся в общей области Д( , которая может быть получена на основании предположения о том, что в вакууме имеются незначительные потери (JmK0<0) (область Д, не являющаяся общей, обусловлена существованием полюса (=(0, сопутствующего падающей волне).
Текущая страница: 1
|
|
|
|
|
Предмет: Физика
|
|
Тема: Модель рассеяния электромагнитной волны параллелепипедом из диэлектрика с потерями |
|
Ключевые слова: Максвелл, Радиоэлектроника, параллелепипедом, Радиоэлектроника компьютеры и периферийные устройства, устройства, Виннер-Хопф, электромагнитной, рассеяния, волны, диэлектрика, Модель рассеяния электромагнитной волны параллелепипедом из диэлектрика с потерями, компьютеры, потерями, Фурье, Модель, вакуум, Виннер-Хопф Максвелл вакуум Фурье, периферийные |
|
|
|
|
|
|
|
|