|
|
|
|
|
|
|
|
страницы:
1
2
3
Текущая страница: 1
|
|
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ ЭЛЕКТРОННОЙ ТЕХНИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)
Расчет площади сложной фигуры с помощью метода имитацеонного моделирования .
Задание: Разработать программу, позволяющую с помощью метода имитационного моделирования рассчитать площадь сложной фигуры, ограниченной сверху кривой U=Y1(x) , снизу V=Y2(x).
1. Для решения данной задачи применим следующий метод.
Ограничим заданную фигуру прямоугольником, стороны которого проходят: через точки максимального и минимального значения функций и параллельны осям абсцисс; через левую и правую граничные точки области определения аргумента и параллельны осям ординат. Используя датчик случайных чисел разыгрываются координаты случайной точки из этого прямоугольника . Проверяем попадаете точки в заданную фигуру. Зная площадь прямоугольника и отношение попавших точек к их общему числу разыгранных, можно оценить площадь интересующей нас фигуры.
2. Технические характеристики объекта исследования: 2.1. Диапазон значений параметров задачи. Множество кривых ограничим полиномами третьего порядка, в виду того что полиномы более высокого порядка сильно увеличивают время вычисления. Причем для наглядности решения вполне достаточно порядка "3". Коэффициенты полинома ограничим диапазоном [-100,100] .
Область определения ограничим диапазоном [-100,100].
Эти ограничения введены для более наглядного решения задачи, и изменить их не с технической точки зрения не сложно.
3. Решение задачи.
Данная задача решена в среде Turbo C. Для решения потребовалось общую задачу разбить на несколько небольших задач (процедур). А именно отдельно( в виде процедур) были решены задачи
-ввод параметров; | процедура get_poly | | -сообщение об ошибке при вводе; | Файл WINDOW.C процедура talkerror | | -рисование рамки окна; | процедура border |
-вычисление минимального и | максимального значении функций ; | процедура f_max | | -вычисление значения полинома в | заданной точке; | Файл MATIM.C процедура fun | | -вычисление корней кубичного | уравнения; | процедура f_root |
-вычисление интеграла численным | методом; | процедура i_num | | Файл F_INTEGER.C -вычисление интеграла с помощью | имитационного моделирования; | процедура i_rand |
-инициализация графического режима | процедура init | | -обводка непрерывного контура | Файл DRAFT.C процедура f_draft | | - вырисовка осей координат | процедура osi |
-вырисовки графиков функций и | Файл DRAFT_F.C штриховка заданной площади | процедура draft_f |
-вырисовка графиков вычисления | площади разными методами и вывод | Файл DRAFT_N.C таблицы результатов вычисления | процедура draft_n |
Схема алгоритма имеет вид:
4. Описание процедур используемый в программе.
4.1 Файл WINDOW.C.
4.1.1 Процедура ввода параметров. void get_poly( float *b3,float *b2,float *b1,float *b0, //-коэффициенты полинома Y1 fliat *c3,float *c2,float *c1,float *c0, //-коэффициенты полинома Y2 float *x1,float *x2, // область определения [x1,x2] int *N ) // количество обращений к генератору //случайных чисел
4.1.2 Процедура рисования рамки окна. void border(int sx, int sy, int en, int ey) // рисует рамку с координатами левого верхнего // угла (sx,sy) и координатами правого нижнего // угла (ex,ey) 4.1.3 Процедура сообщения об ошибке при вводе. void talkerror(void) - Процедура подает звуковой сигнал и выводит на экран сообщение об ошибке при вводе.
4.2. Файл MATIM.C
4.2.1 Процедура вычисления максимального и минимального значений функций на заданном интервале. void f_max(float b3,float b2,float b1,float b0, //-коэффициенты полинома Y1 fliat c3,float c2,float c1,float c0, //-коэффициенты полинома Y2 float x1,float x2, // область определения [x1,x2] float *amin, float *amax) // минимальное и максимальное значения // функций 4.2.2 Процедура вычисления значения полинома в данной точке. float fun(float b3,float b2,float b1,float b0, //-коэффициенты полинома float x) Возвращает значение полинома в точке х.
4.2.3 Процедура вычисления корней кубичного уравнения.
Текущая страница: 1
|
|
|
|
|
|
|
|
|
|