|
|
|
|
|
|
|
|
страницы:
1
2
Текущая страница: 1
|
|
Р Е Ф Е Р А Т
на тему :
“ Динамическое представление сигналов “
Выполнил: Зазимко С.А. Принял : Котоусов А.С.
МОСКВА
Динамическое представление сигналов.
Многие задачи радиотехники требуют специфической формы представления сигналов. Для решения этих задач необходимо располагать не только мгновенным значением сигнала, но и знать как он ведет себя во времени, знать его поведение в “прошлом” и “будущем”. ПРИНЦИП ДИНАМИЧЕСКОГО ПРЕДСТАВЛЕНИЯ.
Данный способ получения моделей сигналов заключается в следующем: Реальный сигнал представляется суммой некоторых элементарных сигналов, возникающих в последовательные моменты времени. Теперь, если мы устремим к нулю длительность отдельных элементарных сигналов, то в пределе получим точное представление исходного сигнала. Такой способ описания сигналов называется динамическим представлением , подчеркивая тем самым развивающийся во времени характер процесса. На практике широкое применение нашли два способа динамического представления. Первый способ в качестве элементарных сигналов использует ступенчатые функции, которые возникают через равные промежутки времени ( . Высота каждой ступеньки равна приращению сигнала на интервале времени (. В результате сигнал может быть представлен как на рисунке 1. рис. 1 При втором способе элементарными сигналами служат прямоугольные импульсы. Эти импульсы непосредственно примыкают друг к другу и образуют последовательность, вписанную в кривую или описанную вокруг нее . В этом случае исходный сигнал имеет вид как на рисунке 2.
рис. 2
Теперь рассмотрим свойства элементарных сигналов. Для начала : используемого для динамического представления по первому способу.
ФУНКЦИЯ ВКЛЮЧЕНИЯ.
Допустим имеется сигнал, математическая модель которого выражается системой :
( 0, t < -(, u(t) ( ( 0.5(t/(+1), -( ( t ( (, (1) ( 1, t > (.
Такая функция описывает процесс перехода некоторого физического объекта из “нулевого” в “единичное” состояние. Переход совершается по линейному закону за время 2(. Теперь если параметр ( устремить к нулю, то в пределе переход из одного состояния в другое будет происходить мгновенно. Такая математическая модель предельного сигнала получила название функции включения или функции Хевисайда : ((((( ((((((((( t < (( ((t((((((((((((((( t ( (( (2) ((((((((( t ( ((
В общем случае функция включения может быть смещена относительно начала отсчета времени на величину t0. Запись смещенной функции такова :
((((( ((((((((( t < t0( ((t - t0(((( ((((((((( t ( t0( (3) ((((((((( t ( t0(
ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПРОИЗВОЛЬНОГО СИГНАЛА ПОСРЕДСТВОМ ФУНКЦИЙ ВКЛЮЧЕНИЯ.
Рассмотрим некоторый сигнал S(t), причем для определенности скажем, что S(t)=0 при t<0. Пусть {(,2(,3(,...} - последовательность моментов времени и {S1,S2,S3,...} - отвечающая им последовательность значений сигнала. Если начальное значение сигнала есть S0=S(0), то текущее значение сигнала при любом t можно приближенно представить в виде суммы ступенчатых функций : ( s(t)(s0((t)+(s1-s0)((t-()+...=s0((t)+((sk-sk-1)((t-k(). k=1
Если теперь шаг ( устремить к нулю. то дискретную переменную k( можно заменить непрерывной переменной (. При этом малые приращения значения сигнала превращаются в дифференциалы ds=(ds/d()d( , и мы получаем формулу динамического представления произвольного сигнала посредством функций Хевисайда ( ( ds S(t)=s0 ((t) + ( ((t-() d( (4) ( d( 0
Переходя ко второму способу динамического представления сигнала , когда элементами разложения служат короткие импульсы, следует ввести новое важное понятие - понятие дельта-функции.
ДЕЛЬТА - ФУНКЦИЯ .
Рассмотрим импульсный сигнал прямоугольной формы, заданный следующим образом : 1 ( ( ( ( u(t;() = ----- ( ( (t + ---- ) - ( (t - ---- ) ( (5) ( ( 2 2 (
При любом выборе параметра ( площадь этого импульса равна единице : ( П = ( u dt = 1 - (
Например, если u - напряжение, то П = 1 В*с. Теперь устремим величину ( к нулю. Импульс, сокращаясь по длительности, сохраняет свою площадь, поэтому его высота должна неограниченно возрастать. Предел последовательности таких функций при ( ( 0 носит название дельта-функции , или функции Дирака :
((t) = lim u (t;() ((0 Дельта функция - интересный математический объект. Будучи равной нулю всюдю, кроме как в точке t = 0 дельта-функция тем не менее обладает единичным интегралом. А вот так выглядит символическое изображение дельта-функции :
Текущая страница: 1
|
|
|
|
|
|
|
|
|
|