|
|
|
|
|
|
|
|
страницы:
1
2
3
4
5
6
7
8
Текущая страница: 1
|
|
МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РФ АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ
кафедра теоретической физики
РЕФЕРАТ на тему: «Квантовые компьютеры»
Выполнил: студент 154 группы ФМФ Безниско Евгений.
Руководитель: к.ф.-м.н., доцент Джалмухамбетов А.У.
Астрахань – 2000 г. Предпосылки создания квантовых компьютеров. Уже сейчас существует множество систем, в работе которых квантовые эффекты играют существенную роль. Одним из наиболее известных примеров может служить лазер: поле его излучения порождается квантово-механическими событиями - спонтанным и индуцированным излучением света. Другим важным примером таких систем являются современные микросхемы - непрерывное ужесточение проектных норм приводит к тому, что квантовые эффекты начинают играть в их поведении существенную роль. В диодах Ганна возникают осцилляции электронных токов, в полупроводниках образуются слоистые структуры: электроны или дырки в различных запертых состояниях могут хранить информацию, а один или несколько электронов могут быть заперты в так называемых квантовых ямах. Сейчас ведутся разработки нового класса квантовых устройств - квантовых компьютеров. Идея квантового компьютера возникла так. Все началось в 1982 году, когда Фейнман написал очень интересную статью [1], в которой рассмотрел два вопроса. Он подошел к процессу вычисления как физик: есть чисто логические ограничения на то, что можно вычислить (можно придумать задачу, для которой вообще нет алгоритма, можно придумать задачу, для которой любой алгоритм будет долго работать). А есть ли ограничения физические? Вот есть закон сохранения энергии - вечный двигатель невозможен; а есть ли какое-нибудь физическое ограничение на функционирование компьютера, которое накладывает некие запреты на реализуемость алгоритмов? И Фейнман показал, что термодинамических ограничений, типа второго начала термодинамики, нет. Если мы будем уменьшать потери энергии, шумы, то мы можем сделать сколь угодно длинные вычисления со сколь угодно малыми затратами энергии. Это означает, что вычисления можно сделать обратимым образом - потому что в необратимых процессах энтропия возрастает. Собственно, Фейнмана это и заинтересовало: ведь реальное вычисление на реальном компьютере необратимо. И полученный им результат состоит в том, что можно так переделать любое вычисление - без особой потери эффективности, - чтобы оно стало обратимым. Те вычисления, которые делаются «просто так», конечно, необратимы, но «рост необратимости» пренебрежимо мал по сравнению, скажем, с шумами в современном компьютере. То есть необратимость - это тонкий эффект; тут вопрос не практический а принципиальный: если представить себе, что технология дойдет до такого уровня, что этот эффект станет существенным, то можно так перестроить вычисления, чтобы добиться обратимости. И в этой же работе Фейнман обратил внимание на то, что если у нас имеется устройство квантовое, то есть подчиняющееся законам квантовой механики, то его вычислительные возможности совершенно не обязательно должны совпадать с возможностями обычного устройства. Возникают некоторые дополнительные возможности. Но пока непонятно, позволяют они получить какой-то выигрыш или нет. Фактически, он и поставил своей статьей такой вопрос. Кстати, Ю.И. Манин в конце семидесятых годов написал две популярные книжки по логике - «Вычислимое и невычислимое» и «Доказуемое и недоказуемое», и в одной из них есть сюжет про квантовые автоматы, где он говорит о некоторых кардинальных отличиях этих автоматов от классических [2]. В середине восьмидесятых годов появились работы Дойча (D. Deutsch), Бернстайна и Вазирани (Е. Bernstein, U. Vazirani), Яo (A. Уао). В них были построены формальные модели квантового компьютера - например, квантовая машина Тьюринга [3-6]. Следующий этап - статья Шора (Р.W. Shor) 1994 года [7], вызвавшая лавинообразный рост числа публикаций о квантовых вычислениях. Шор построил квантовый (то есть реализуемый на квантовом компьютере) алгоритм факторизации (разложения целых чисел на множители - используется в том числе для вскрытия зашифрованных сообщений). Все известные алгоритмы для обычного компьютера - экспоненциальные (время их работы растет как экспонента от числа знаков в записи факторизуемого числа). Факторизация 129-разрядного числа потребовала 500 MIPS-лет, или восемь месяцев непрерывной работы системы из 1600 рабочих станций, объединенных через Интернет. А при числе разрядов порядка 300 это время существенно превзойдет возраст Вселенной - даже если работать одновременно на всех существующих в мире машинах. Считается (хотя это и не доказано!), что быстрого алгоритма решения этой задачи не существует. Более того, гарантией надежности большинства существующих шифров является именно сложность решения задачи факторизации или одной из родственных ей теоретико-числовых задач, например - дискретного логарифма. И вдруг выясняется, что на квантовом компьютере эта задача имеет всего лишь кубическую сложность! Перед квантовым компьютером классические банковские, военные и другие шифры мгновенно теряют всякую ценность. Короче говоря, работа Шора показала, что вся эта изысканная академическая деятельность непосредственно касается такой первобытной стихии, как деньги. После этого и началась настоящая популярность...
Текущая страница: 1
|
|
|
|
|
Предмет: Физика
Информатика
|
|
Тема: Квантовые компьютеры |
|
Ключевые слова: Кибернетика, факторизация, Квантовые, Квантовые компьютеры, криптография, компьютеры, вычисления, Кибернетика компьютеры программирование, программирование, вычисления криптография факторизация кубит, кубит |
|
|
|
|
|
|
|
|