|
|
|
|
|
|
|
|
страницы:
1
2
Текущая страница: 1
|
|
Министерство общего и профессионального образования РФ. Уральский государственный технический университет – УПИ Кафедра “Технология и средства связи”
"Исследование точности численного интегрирования" "Research of Accuracy of Numerical Integration"
Отчет по лабораторной работе дисциплины "Информатика", третий семестр
Преподаватель: Болтаев А.В. Студенты: Степанов А.Г Черепанов К.А. Группа: Р-207
Екатеринбург 2000 Содержание Задание исследования 3 Подробное описание задачи и способы ее решения 3 Результаты исследований 4 Сравнение результатов 12 Список библиографических источников 13 Текст программы 13
Задание исследования Провести исследование внутренней сходимости численного интегрирования методом Симпсона и трапеций различных функций, задаваемых с помощью языка С. Подробное описание задачи и способы ее решения Необходимо провести исследования так называемой внутренней сходимости численного интегрирования методами Симсона и трапеций различных функций, задаваемых с помощью функций языка С. Предполагается, что отрезок интегрирования [a,b] разбит на n равных частей системой точек (сеткой). Контроль внутренней сходимости заключается в циклическом вычислении приближенных значений интеграла для удваимого по сравнению со значением на предыдущем прохождении цикла числа n. Отношения абсолютной величины разности этих значений к абсолютной величине предыдущего приближенного значения принимается в качестве критерия достижения точности интеграла. Построить зависимости количеств итераций от различных величин критерия точности. Построить обратные зависимости критерия точноти от количества итераций. Повторить все вышеуказанные исследования для случая, когда при вычислении критерия точности разность значений интеграла относится не к предыдущему значению, а к точному значению аналитически вычисленного интеграла. Исследовать влияние увеличения верхнего предела интегрирования на точность (при прочих неизменных условиях) Метод трапеций , где Метод Симпсона , где
Результаты исследований Таблица и график зависимости количества итераций от различных значений критерия точности Для Критерий точности Количество итераций
-0,1676631 14
-0,1518916 16
-0,0046931 12
-0,0026531 11
-0,0002639 10
-0,0001709 2
-0,0001297 9
-0,0000557 3
-0,000025 8
-0,0000198 4
-0,0000096 5
-0,0000038 6
0 15
0,0000052 7
0,071089 13
Критерий точности Количество итераций
-0,1127271 16
-0,0750288 15
-0,0540677 14
-0,0021415 12
-0,0005711 11
-0,0000458 9
-0,0000381 2
-0,0000191 3
-0,000008 4
-0,000004 5
-0,0000019 7
-0,0000002 6
0,000005 8
0,0002983 10
0,0164377 13
Критерий точности Количество итераций
-0,0066709 13
-0,0042367 14
-0,0003561 10
-0,0000016 5
-0,000001 4
0,0000005 3
0,0000006 6
0,0000009 2
0,0000009 7
0,0000223 8
0,000056 9
0,0002782 11
0,0003474 12
0,005293 16
0,0053267 15
Критерий точности Критерий точности
-61,4469795 12
-5,714047 3
-1,0215755 13
-0,7241433 2
-0,5121117 4
-0,3222643 11
-0,2163614 7
-0,1536629 9
-0,0930261 14
0,0353183 16
0,057059 15
0,1697371 5
0,2025534 10
0,2504728 6
0,6202592 8
Критерий точности Количество итераций
-0,0119308 16
-0,0007834 13
-0,0000079 3
-0,0000041 4
-0,0000037 7
-0,0000027 5
-0,0000027 6
-0,000002 8
-0,0000016 2
0,0000003 10
0,0000062 9
0,0000385 11
0,0000802 12
0,0005452 15
0,0016689 14
Критерий точности Количество итераций
-0,0026286 16
-0,0012416 14
-0,0000118 3
-0,0000107 4
-0,0000046 5
-0,0000046 9
-0,0000028 6
-0,0000021 7
-0,0000005 2
0,0000011 10
0,0000018 8
0,0000023 11
0,000058 12
0,0001049 13
0,0027928 15
Таблица и график зависимости значений критерия точности от количества итераций Для функции По отношению к предыдущему значению
По отношению к аналитическому значению
Критерий точности Количество итераций Критерий точности Количество итераций
-0,0001709 2 -0,0001932 2
-0,0000557 3 -0,0000629 3
-0,0000198 4 -0,0000224 4
-0,0000096 5 -0,0000108 5
-0,0000038 6 -0,0000043 6
0,0000052 7 0,0000058 7
-0,000025 8 -0,0000283 8
-0,0001297 9 -0,0001466 9
-0,0002639 10 -0,0002983 10
-0,0026531 11 -0,002998 11
-0,0046931 12 -0,0052891 12
0,071089 13 0,0797403 13
-0,1676631 14 -0,2014365 14
0 15 0 15
-0,1518916 16 -0,1518916 16
Для функции По отношению к предыдущему значению
По отношению к аналитическому значению
Критерий точности
Текущая страница: 1
|
|
|
|
|
Предмет: Информатика
|
|
Тема: Исследование точности численного интегрирования |
|
Ключевые слова: итерации, интегрирования, комп-ры, метод, Программирование и комп-ры, Программирование, Исследование, Трапепеций, численного, метод Симпсон Трапепеций итерации, Симпсон, Исследование точности численного интегрирования, точности |
|
|
|
|
|
|
|
|