|
|
|
|
|
|
|
|
страницы:
1
2
3
Текущая страница: 1
|
|
Сибирский институт финансов и банковского дела Кафедра: Финансы и кредит
Контрольная работа по дисциплине: Финансовые расчеты Вариант №3
Выполнил: студентка группы СЗ-96 Бурдюгова О.В. Проверил: кандидат экономических наук Текутьев Владимир Евгеньевич
Новосибирск 1998 г. Раздел 1. Проценты Задача №1
Ссуда в размере 1,000 д. е. предоставлена 5 февраля и должна быть погашена 5 мая с уплатой простых процентов по годовой ставке 70%. Какую сумму должен возвратить заемщик при начислении: обыкновенных процентов с приближенным числом дней ссуды; обыкновенных процентов с точным числом дней ссуды; точных процентов;
Решение
Дано P = 1,000 S = P(1+in) i = 0.7 n = t/T S = ?
А) метод обыкновенных процентов с приближенным числом дней: t = 24+30+30+4 = 88 T = 360 n = 0.244 1 S = 1,000(1+0.7*0.244) = 414.8 д.е
Б) метод обыкновенных процентов с точным числом дней:2 t = 24+31+30+4 = 89 T = 360 n = 0.247 S = 1,000(1+0.7*0.247) = 419.9 д.е.
В) метод точных процентов: t = 24+31+30+4 = 89 T = 365 n = 0.244 S = 1,000(1+0.7*0.244) = 414.8 д.е.
1 Все вычисления в данной работе производятся до 3 –го знака после запятой, если другое не оговорено отдельно. 2 Во всех задачах в данной работе при вычислений n = t/T используется метод обыкновенных процентов с точным числом дней, если другое не оговорено условием задачи.
Задача №2
Вклад в сбербанк в сумме 200,000 рублей помещен под 70% годовых. Рассчитать сумму вклада и начисленные проценты: через 7 месяцев; через 2.5 года. Чему равны множители наращения в обоих случаях?
Решение
Дано P = 200,000 руб. 1) S = P(1+in) n1 = 7/12 года I = S - P n2 = 2.5 года qs = S/P i = 0.7 2) S = P(1+i)na (1+nbi) S-?, I-?, qs-?, qc-? где na + nb = n na – целая часть периода nb – дробная часть периода
при n < 1 начисляются простые проценты S = 200,000(1+0.583*0.7) = 221620д.е. I = 221620 – 200,000 = 21620 qs = 221620/200,000 = 1.108
если n > 1 и не целое число то проценты начисляются по комбинированному способу S = 200,000(1+0.7)2 (1+0.7*0.5) = 491300 д.е. I = 491300 – 200,000 = 291300 qc = 491300/200,000 = 2.457
Задача №3
Выразить при помощи эффективной ставки доходность следующих операций: некоторая сумма помещается на 1 – месячный депозит под 80% годовых; некоторая сумма помещается на 3 – месячный депозит под 90 % годовых. Какая из двух операций эффективней? Дано j1 = 80% ; m1 = 12 ; n1 = 1/12 j2 = 90% ; m2 = 4 ; n2 = 0.25 ie = (1+j/m)mn - 1
Вычислим периодическую ставку при 1- месячном и 3-х месячном депозитах: j1/m1 = 80/12 = 6.667% - на месячном депозите j2/m2 = 90/4 = 22.5% - на 3-х месячном депозите Непосредственное сравнение 6.667% за 1 месяц и 22.5% за 3 месяца не позволяет сравнить эффективность этих операций. Поэтому для сравнения эффективности этих операций вычислим годовую эффективную ставку для каждой из них: ie = (1+0.8/12)12 – 1 = 1.17 = 117% - для 1 - месячного депозита ie = (1+0.9/4)4 – 1 = 1.252 = 125.2% - для 3-х месячного депозита Сравнив годовые эффективные ставки мы видим, что операция с одномесячным депозитом эффективнее операции с 3-х месячным депозитом при данных процентных ставках.
Задача №4
Вексель на сумму 1,200,000 д.е. со сроком уплаты 1 ноября учитывается в банке 1 сентября по учетной ставке 28 %. Какую сумму получит владелец векселя (без уплаты комиссионных )? Какова величина дисконта?
Решение
Дано S = 1,200,000 Sk = S - D ds = 0.28 где Sk – сумма полученная Sk - ? , D - ? клиентом. D = Snds n = t/T
n = t/T = 61/360 = 0.169 D = 1,200,000*0.169*0.28 = 56,784 д.е. Sk = 1,200,000 – 56784 = 1,143,216 д.е.
Задача№5
За какой срок при начислении сложных процентов удваивается сумма вклада, помещенного под 25% годовых, если начисление производится: ежегодно; ежеквартально; ежемесячно. Решение
Дано i = 0.25 1) S = P(1 + i)n , где S = 2P n - ? 2) и 3) S = P(1 + j/m)mn , где S = 2P
2P = P(1+0.25)n ; сократим обе части уравнения на P 2 = 1.25n ; прологарифмируем обе части уравнения lg2 = lg1.25n = nlg1.25 n = lg2/lg1.25 = 0.301/0.097= 3.103 года сделаем проверку: пусть P = 1000 , тогда S = 1000(1+0.25)3.103 = 1998.535 при вычислении до 4-го или 5-го знака после запятой получатся более точное значение n. 2P = P(1+j/m)mn 2 = 1.0634n lg2 = 4nlg1.063 n = lg2/(4lg1.063) = 2.84 года; 2P = P(1+j/m)mn 2 = 1.02112n n = lg2/(12lg1.021) = 2.79 года;
Задача №6
Какая годовая ставка сложных процентов обеспечивает удвоение вклада до востребования за 1.17 года, если проценты начисляются: ежеквартально; ежемесячно; ежедневно.
Решение
Дано n = 1.17 S = P(1+j/m)mn j - ? где S = 2P
2P = P(1+j/4)4.68 2 = (1+j/4)4.68 (21/4.68 - 1)m = j j = 4(21/4.68 - 1) = 0.64 = 64% 2P = P(1+j/12)14.04 j = 12(21/14.04 - 1) = 0.605 = 60.5%
2P = P(1+j/360)427.05 j = 360(21/427.05 - 1) = 0.506 = 50.6% (вычисления производились до 4-го знака после запятой).
Текущая страница: 1
|
|
|
|
|
|
|
|
|
|