Милетская школа  : Философия - на REFLIST.RU

Милетская школа : Философия - на REFLIST.RU

Система поиска www.RefList.ru позволяет искать по собственной базе из 9 тысяч рефератов, курсовых, дипломов, а также по другим рефератным и студенческим сайтам.
Общее число документов более 50 тысяч .

рефераты, курсовые, дипломы главная
рефераты, курсовые, дипломы поиск
запомнить сайт
добавить в избранное
книжная витрина
пишите нам
  Ссылки:
Великобритания из Челябинска
Список категорий документа Философия
Милетская школа

Милетская школа

философия, Милетская школа, Милетская, Психология  социология  философия, школа, социология, Психология Ключевые слова
страницы: 1  2 
Текущая страница: 1


x
                          Милетская школа

     Милетская школа - одна из первых древнегреческих математических
школ, оказавшая существенное влияние на развитие философских  предс-
тавлений того  времени.  Она существовала в Ионии в конце V - IV вв.
до н.э.;  основными деятелями ее являлись Фалес (ок.  624-547 гг. до
н.э.), Анаксимандр  (ок.  610-546  гг.  до  н.э.)  и  Анаксимен (ок.
585-525 гг. до н.э.). Рассмотрим на примере милетской школы основные
отличия греческой науки от догреческой и проанализируем их.
     Если сопоставить исходные математические знания греков с дости-
жениями египтян и вавилонян, то вряд ли можно сомневаться в том, что
такие элементарные положения, как равенство углов у основания равно-
бедренного треугольника,  открытие  которого  приписывают Фалесу Ми-
летскому, не были известны древней математике. Тем не менее, гречес-
кая математика  уже в исходном своем пункте имела качественное отли-
чие от своих предшественников.
     Ее своеобразие заключается прежде всего в попытке систематичес-
ки использовать идею доказательства.  Фалес стремится  доказать  то,
что эмпирически было получено и без должного обоснования использова-
лось в египетской и вавилонской математике.  Возможно, в период наи-
более интенсивного развития духовной жизни Вавилона и Египта,  в пе-
риод формирования основ их знаний изложение тех или  иных  математи-
ческих положений  сопровождалось  обоснованием в той или иной форме.
Однако, как пишет Ван дер Варден,  "во времена Фалеса  египетская  и
вавилонская математика давно уже были мертвыми знаниями.  Можно было
показать Фалесу,  как надо вычислять, но уже неизвестен был ход рас-
суждений, лежащих в основе этих правил".
     Греки вводят процесс обоснования как необходимый компонент  ма-
тематической действительности, доказательность действительно являет-
ся отличительной чертой их математики.  Техникой доказательства ран-
ней греческой математики как в геометрии,  так и в арифметике перво-
начально являлась простая попытка придания наглядности.  Конкретными
разновидностями такого  доказательства в арифметике было доказатель-
ство при помощи камешков, в геометрии - путем наложения. Но сам факт
наличия доказательства  говорит  о  том,  что  математические знания
воспринимаются не догматически,  а в процессе  размышления.  Это,  в
свою очередь, обнаруживает критический склад ума, уверенность (может
быть, не всегда осознанную),  что размышлением можно установить пра-
вильность или ложность рассматриваемого положения, уверенность в си-
ле человеческого разума.
     Греки в  течении одного-двух столетия сумели овладеть математи-
ческим наследием предшественников,  накопленного в течении тысячеле-
тий, что свидетельствует об интенсивности, динамизме их математичес-
кого познания. Качественное отличие исследований Фалеса и его после-
дователей от  догреческой  математики проявляется не столько в конк-
ретном содержании исследованной зависимости, сколько в новом способе
математического мышления.  Исходный материал греки взяли у предшест-
венников, но способ усвоения и использования этого материала был но-
вый. Отличительными  особенностями их математического познания явля-
ются рационализм, критицизм, динамизм.
     Эти же  черты характерны и для философских исследований милетс-
кой школы. Философская концепция и совокупность математических поло-
жений формируется посредством однородного по своим общим характерис-
тикам мыслительного  процесса,  качественно  отличного  от  мышления
предшествующей эпохи. Как же сформировался этот новый способ воспри-
ятия действительности? Откуда берет свое начало стремление к научно-
му знанию?
     Ряд исследователей  объявляет  отмеченные  выше  характеристики
мыслительного процесса  "врожденными особенностями греческого духа".
Однако эта ссылка ничего не объясняет, так как непонятно, почему тот
же "греческий дух" по прошествии эпохи эллинизма теряет свои качест-
ва. Можно попробовать поискать причины такого миропонимания в  соци-
ально-экономической сфере.
     Иония, где проходила деятельность милетской школы,  была доста-
точно развитой  в  экономическом отношении областью.  Поэтому именно
она прежде прочих вступила на путь низвержения  первобытно-общинного
строя и формирования рабовладельческих отношений.  В VIII-VI вв.  до
н.э. земля все больше сосредотачивалась в руках крупной родовой зна-
ти. Развитие ремесленного производства и торговли еще в большей мере
ускоряло процесс социально-имущественного расслоения. Отношения меж-
ду аристократией и демосом становятся напряженными;  со временем эта
напряженность перерастает в открытую борьбу за  власть.  Калейдоскоп
событий во внутренней жизни,  не менее изменчивая внешняя обстановка
формируют динамизм, живость общественной мысли.
     Напряженность в  политической и экономической сферах приводит к
столкновениям в области религии, поскольку демос , еще не сомневаясь
в том,  что религиозные и светские устанp - $u



Текущая страница: 1

страницы: 1  2 
Список предметов Предмет: Философия
Милетская школа Тема: Милетская школа
философия, Милетская школа, Милетская, Психология  социология  философия, школа, социология, Психология Ключевые слова: философия, Милетская школа, Милетская, Психология социология философия, школа, социология, Психология
   Книги:


Copyright c 2003 REFLIST.RU
All right reserved. liveinternet.ru

поиск рефератов запомнить сайт добавить в избранное пишите нам