СИСТЕМА ФИЛОСОФИИ МАТЕМАТИКИ АРИСТОТЕЛЯ
К.Маркс назвал Аристотеля (384-322 гг. до н.э.) "величайшим фи-
лософом древности". Основные вопросы философии, логики, психологии,
естествознания, техники, политики, этики и эстетики, поставленные в
науке Древней Греции, получили у Аристотеля полное и всестороннее
освещение. В математике он, по-видимому, не проводил конкретных ис-
следований, однако важнейшие стороны математического познания были
подвергнуты им глубокому философскому анализу, послужившему методо-
логической основой деятельности многих поколений математиков.
Ко времени Аристотеля теоретическая математика прошла значи-
тельный путь и достигла высокого уровня развития. Продолжая традицию
философского анализа математического познания, Аристотель поставил
вопрос о необходимости упорядочивания самого знания о способах усво-
ения науки, о целенаправленной разработке искусства ведения познава-
тельной деятельности, включающего два основных раздела: "образован-
ность" и "научное знание дела". Среди известных сочинений Аристотеля
нет специально посвященных изложению методологических проблем мате-
матики. Но по отдельным высказываниям, по использованию математичес-
кого материала в качестве иллюстраций общих методологических положе-
ний можно составить представление о том, каков был его идеал постро-
ения системы математических знаний.
Исходным этапом познавательной деятельности, согласно Аристоте-
лю, является обучение, которое "основано на (некотором) уже ранее
имеющемся знании... Как математические науки, так и каждое из прочих
искусств приобретается (именно) таким способом". Для отделения зна-
ния от незнания Аристотель предлагает проанализировать "все те мне-
ния, которые по-своему высказывали в этой области некоторые мыслите-
ли" и обдумать возникшие при этом затруднения. Анализ следует прово-
дить с целью выяснения четырех вопросов: "что (вещь) есть, почему
(она) есть, есть ли (она) и что (она) есть".
Основным принципом, определяющим всю структуру "научного знания
дела", является принцип сведения всего к началам и воспроизведения
всего из начал. Универсальным процессом производства знаний из на-
чал, согласно Аристотелю, выступает доказательство. "Доказательством
же я называю силлогизм, - пишет он, - который дает знания". Изложе-
нию теории доказательного знания полностью посвящен "Органон" Арис-
тотеля. Основные положения этой теории можно сгруппировать в разде-
лы, каждый из которых раскрывает одну из трех основных сторон мате-
матики как доказывающей науки: "то, относительно чего доказывается,
то, что доказывается и то, на основании чего доказывается". Таким
образом, Аристотель дифференцированно подходил к объекту, предмету и
средствам доказательства.
Существование математических объектов признавалось задолго до
Аристотеля, однако пифагорейцы, например, предполагали, что они на-
ходятся в чувственных вещах, платоники же, наоборот, считали их су-
ществующими отдельно. Согласно Аристотелю:
1. В чувственных вещах математические объекты не существуют,
так как "находиться в том же самом месте два тела не в состоянии";
2. "Невозможно и то, чтобы такие реальности существовали обо-
собленно".
Аристотель считал предметом математики "количественную опреде-
ленность и непрерывность". В его трактовке "количеством называется
то, что может быть разделено на составные части, каждая из кото-
рых ...является чем-то одним, данным налицо. То или другое количест-
во есть множество, если его можно счесть, это величина, если его
можно измерить". Множеством при этом называется то, "что в возмож-
ности (потенциально) делится на части не непрерывные, величиною -
то, что делится на части непрерывные". Прежде чем дать определение
непрерывности, Аристотель рассматривает понятие бесконечного, так
как "оно относится к категории количества" и проявляется прежде все-
го в непрерывном. "Что бесконечное существует, уверенность в этом
возникает у исследователей из пяти оснований: из времени (ибо оно
бесконечно); из разделения величин..; далее, только таким образом не
иссякнут возникновение и уничтожение, если будет бесконечное, откуда
берется возникающее. Далее, из того, что конечное всегда граничит с
чем-нибудь, так как необходимо, чтобы одно всегда граничило с дру-
гим. Но больше всего -...на том основании, что мышление не останав-
ливается: и число кажется бесконечным, и математические величины".
Существует ли бесконечное как отдельная сущность или оно является
акциденцией величины или множества? Аристотель принимает второй ва-
риант, так как "если бесконечное не есть ни величина, ни множество,
а само является сущностью..., то оно будет неделимо, так как делимое
будет или величиной, или множеством. Если же оно не делимо, оно не
бесконечно в смысле непроходимого до конца". Невозможность математи-
ческого бесконечного как нessiРшЕ
Текущая страница: 1
|